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ABSTRACT Whole-genome sequencing of penicillin-resistant Staphylococcus arlettae
strain SAN1670 from bovine mastitis milk revealed a novel �-lactamase operon con-
sisting of the �-lactamase-encoding gene blaARL, the antirepressor-encoding gene
blaR1ARL, and the repressor-encoding gene blaIARL. The functionality of blaARL was dem-
onstrated by gene expression in Staphylococcus aureus. The blaARL operon was chromo-
somally located in SAN1670 and present in 10 additional unrelated strains, suggesting
intrinsic penicillin resistance in S. arlettae. Furthermore, a GenBank search revealed more
unique potential �-lactamases in Staphylococcus species.

IMPORTANCE Penicillins are an important group of antibiotics used to treat various
types of infections caused by Gram-positive bacteria. So far, the blaZ gene was the only
known �-lactamase gene in staphylococci. However, other putative �-lactamases were
identified, and one of them was shown to be a novel functional �-lactamase encoded
by blaARL in Staphylococcus arlettae, further limiting treatment options.

KEYWORDS antibiotic resistance, beta-lactamases, coagulase-negative staphylococci,
penicillinase

Staphylococcus arlettae is a ubiquitous coagulase-negative staphylococcus first iso-
lated from the skin and nares of poultry and goats, respectively (1). Later, it was also

found in the environment of tobacco fermentation (Culture Collection, University of
Göteborg [CCUG], Göteborg, Sweden), the skin of horses (2), and bovine teat skin (3).
In some cases, it was associated with bovine mastitis (4). Today, the intramammary
application of penicillin alone or in combination with other antibiotics is the mastitis
treatment method most frequently used in dairy cows (5). However, penicillin can be
hydrolyzed by �-lactamase-producing staphylococci that have acquired the blaZ gene,
so far the only known �-lactamase gene in staphylococci (6). This gene is organized in
an operon with the antirepressor-encoding gene blaR1 and the repressor-encoding
gene blaI. BlaR1 and BlaI form a regulatory two-component system responsible for
inducible blaZ expression in the presence of �-lactam antibiotics (7, 8). The blaZ gene
is widespread in several Staphylococcus species, including Staphylococcus aureus (6, 9),
and has been found on different mobile genetic elements like transposon Tn552 and
conjugative plasmids (10–12).

In 2010, penicillinase-producing S. arlettae strain SAN1670 was isolated from a
bovine mastitis milk sample at our institute in Switzerland. PCR failed to identify the
blaZ gene, prompting us to determine the nature of this �-lactamase phenotype by
whole-genome sequencing. This allowed us to identify a novel functional �-lactamase
in S. arlettae. Searching for further bla homologs in the gene pool of Staphylococcus
revealed several uncharacterized potential �-lactamase sequences.

Novel �-lactamase blaARL on the chromosome of S. arlettae SAN1670. The whole-
genome sequence of S. arlettae SAN1670 was obtained by using Illumina MiSeq
technology and reagent kit v 2 (Illumina, Inc., San Diego, CA) at the Labormedizinisches
Zentrum Risch, Liebefeld-Bern, Switzerland. Reads were assembled into contigs with
Geneious version R9.1.5 (13). TBLASTn analysis (http://www.ncbi.nlm.nih.gov/blast/) of
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the contigs generated revealed a distantly related blaZ homolog on a 145-kb contig
(GenBank accession number KY363215). This blaZ homolog was named blaARL, where
bla defines the gene and ARL is the enzyme, in accordance with the nomenclature used
for other �-lactamases (14). The 849-bp blaARL gene encodes a 282-amino-acid protein
containing the consensus pattern for the �-lactamase class A active site (PS00146)
defined in the Prosite database (15). The active-site serine present in all class A, C, and
D �-lactamases was identified at position 63 of the ARL enzyme. The blaARL gene was
preceded by two regulatory genes, blaIARL and blaR1ARL, transcribed in the opposite
direction, forming a �-lactamase operon similar to blaI-blaR1-blaZ. This operon had 55%
overall nucleotide sequence identity with Tn552 (GenBank accession number X52734)
(11) and is expected to be responsible for inducible blaARL expression in S. arlettae
SAN1670. Analysis of a 50-kb region on each side of the blaARL gene identified genes
belonging to the core genome of staphylococci such as xprI, pbuX, guaA, and guaB,
which are involved in purine metabolism, as well as rpsR, rpsF, and ssb, which encode
ribosomal proteins and a single-strand DNA-binding protein. The absence of trans-
posases or recombinases within this region indicates that blaARL is stably integrated
into the chromosome.

Identification of bla homologs in staphylococci. A search for ARL enzyme ho-
mology in all of the available staphylococcal sequences in the NCBI GenBank database
showed that the blaARL gene was also present in shotgun genomes of S. arlettae strains
CVD059 (GenBank accession number ALWK01000016) (16) and EGD-HP3 (GenBank
accession number AVOQ01000023). These blaARL genes were 99.5% identical and had
94% nucleotide sequence identity and 97% amino acid sequence identity with blaARL

of SAN1670. Alignment of blaARL with blaZ of S. aureus NCTC 9789 (GenBank accession
number X52734) (11) resulted in only 59% nucleotide sequence identity between the
genes and 48% amino acid sequence identity between the �-lactamases ARL and PC1
encoded by blaZ. The PC1 enzyme is widespread in staphylococci and was identified in
27 different species (Fig. 1). Additional putative �-lactamases containing the class A
consensus pattern (PS00146) were also detected. Four of these �-lactamases were
found in the class E mec gene complex and clustered into a group with 67 to 71%
amino acid sequence identity with PC1 and 46 to 49% amino acid sequence identity
with ARL (Fig. 1). The other eight uncharacterized �-lactamases were unrelated and had
47 to 67% amino acid sequence identity with PC1 and 47 to 56% amino acid sequence
identity with ARL (Fig. 1). These putative �-lactamases were unique to the species they
belonged to, and none of them were preceded by the regulatory genes blaI and blaR1,
such as in blaZ and blaARL operon.

Expression of blaARL in S. aureus. To prove the functionality of the novel �-lactamase
of S. arlettae, the blaARL gene was cloned with and without the regulator genes blaIARL

and blaR1ARL from SAN1670 and expressed in S. aureus RN4220. The entire blaIARL-
blaR1ARL-blaARL operon was amplified with primers blaR1_M1670-XhoI-F and bla_
M1670-PstI-R (see Table S1 in the supplemental material for the primers and PCR
conditions used). The resulting fragment was cloned into the XhoI and PstI restriction
sites of the S. aureus-Escherichia coli shuttle vector pTSSCm (17) to generate plasmid
pSAN01. The blaARL gene alone was amplified with primers bla_M1670-NdeI-F and
bla_M1670-SpeI-R (see Table S1) and inserted downstream of the type 1 capsule gene
1A promoter (Pcap) of pBUS1-Pcap-HC (17) to generate plasmid pSAN02. Plasmids
pSAN01 and pSAN02 were transformed into E. coli DH5� and selected for tetracycline
resistance (10 �g/ml) encoded on the vectors. Sanger sequencing confirmed the
correct blaARL operon sequence in pSAN01; therefore, the plasmid was electroporated
into RN4220 (18). However, nonsense mutations were observed at the 5= end of the
blaARL gene in all of the pSAN02 plasmids sequenced, indicating that constitutive
�-lactamase expression could be deleterious to E. coli. To reverse the mutation in blaARL

from pSAN02, QuikChange site-directed mutagenesis was performed directly in S. au-
reus RN4220. A missing thymidine (T) in the T stretch at gene positions 10 to 15 in a
faulty plasmid was introduced by PCR (Phusion Hot Start II High-Fidelity DNA Polymer-
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ase; Thermo Fisher Scientific, Waltham, MA) with overlapping primers mut_M1670-F
(5=-GGTTTATCATATGAAAAAGTTTTTTACTATCTTTGTCTTACTCTG) and mut_M1670-R (5=-
CTTTTTCATATGATAAACCTCCTATTTTCCTTTCTTGTTTTC) (the T stretch is italic, and the
start codon of blaARL is bold) (19). The reaction product was treated with the DpnI

FIG 1 Phylogenetic tree of �-lactamases encoded by staphylococci. Evolutionary analysis was performed for amino acid sequences by the unweighted pair
group method using average linkages in MEGA7. Evolutionary distances were computed by the Poisson correction method and were measured as the number
of amino acid substitutions per site. The percentages of amino acid and nucleotide sequence identity between blaARL and other �-lactamases were determined
by sequence alignment with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Roman numerals indicate �-lactamase groups as follows: I, blaZ; II,
blaARL; III, �-lactamases of the class E mec gene complex; IV, group of diverse uncharacterized �-lactamases.
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restriction enzyme and directly electroporated into RN4220 cells to obtain plasmid
pSAN02mut. Sequencing of the mutagenized plasmid in RN4220 clones confirmed the
correct sequence of blaARL. Furthermore, pSAN02mut isolated from RN4220 could not
be transformed into E. coli, confirming that the constitutive expression of blaARL from
Pcap is not compatible with E. coli.

The production of a functional �-lactamase by S. aureus RN4220 containing pSAN01
and pSAN02mut was demonstrated by a positive nitrocefin test on BBL DrySlide
nitrocefin (Becton, Dickinson and Company, Franklin Lakes, NJ) and by increased
resistance to penicillin (Table 1) but not to other �-lactams, including ceftriaxone,
cefaclor, cefepime, cefixime, cefuroxime, ertapenem, cefepime, cefotaxime, imipenem,
ceftazidime, and temocillin. MICs were determined by microdilution in cation-adjusted
BBL Mueller-Hinton II Broth (Becton, Dickinson and Company) with EUST, HPB1, and
EUVSEC2 Sensititre Plates (Thermo Fisher Scientific) in accordance with CLSI guidelines
(20).

The MICs of both penicillin and ampicillin were higher for RN4220/pSAN02mut
expressing blaARL constitutively than for RN4220/pSAN01 containing blaARL regulated
by blaIARL and blaR1ARL (Table 1). Higher MICs of the cephalosporin cefoxitin and the
carbapenem meropenem, with a 2-fold increase, were also observed with pSAN02mut.
This is likely to be a side effect of overproduction of ARL, a protein that can bind
�-lactams. It is unlikely that ARL can hydrolyze these �-lactam rings since class A
�-lactamases like PC1 are primarily penicillinases and are not expected to have any
cephalosporinase or carbapenemase activity (21). Absence of carbapenemase activity
was confirmed with the Blue-Carba test (22).

Distribution of blaARL in S. arlettae. Ten additional S. arlettae strains from different
origins were tested for �-lactam resistance (Table 1). All displayed decreased suscep-
tibility to penicillin with a MIC above the CLSI resistance breakpoints (20). Production
of �-lactamase by the nitrocefin slide method was also observed in all of the strains
except SAN2420, which was negative in this test. All strains were positive for blaARL by
PCR with primers blaARL-F (5=-CTATCTTTGTCTTACTCTGTGT) and blaARL-R (5=-GCMTG
ACGTGCTGCTTGTGC) (see Table S1). Analysis of the blaARL region by PCR and Sanger

TABLE 1 Staphylococcus strain characteristics and origins and MICs of �-lactam antibiotics

Strain/plasmid Origin and characteristics
Reference
or source

MIC (�g/ml)
Nitrocefin
test resultPenicillin Ampicillin Cefoxitin Meropenem

S. aureus
RN4220 Plasmid-free recipient 25 �0.125 �0.12 2 0.06 Negative
RN4220/pBUS1-Pcap-HC RN4220 containing expression

vector pBUS1-Pcap-HC
17 �0.125 �0.12 2 0.06 Negative

RN4220/pTSSCm RN4220 containing cloning vector
pTSSCm

17 �0.125 �0.12 2 0.06 Negative

RN4220/pSAN01 RN4220 harboring pTSSCm with
blaIARL-blaR1ARL-blaARL operon

This study 0.25 �0.12 2 0.06 Positive

RN4220/pSAN02mut RN4220 harboring pBUS1-Pcap-HC with
blaARL gene under control of
Pcap promoter

This study 2 0.5 4 0.12 Positive

S. arlettae
SAN1670 Bovine mastitis milk, Switzerland, 2010 This study 0.5 0.5 4 0.5 Positive
SAN2677 Bovine mastitis milk, Switzerland, 2015 This study 0.25 0.5 4 0.25 Positive
SAN2690 Bovine mastitis milk, Switzerland, 2015 This study 0.25 0.5 4 0.25 Positive
SAN1988 Bovine mastitis milk, Switzerland, 2016 This study 0.5 0.25 2 0.25 Positive
SAN2420 Bovine mastitis milk, Switzerland, 2016 This study 0.5 0.5 2 0.5 Negative
BM242 Bovine mastitis milk, Switzerland, 2016 This study/

Agroscope
0.25 0.5 4 0.5 Positive

CSKR33 Equine skin, Switzerland, 2004 2 0.5 1 2 0.25 Positive
CCUG 33610 Tobacco fermentation process,

Sweden, 1994
CCUG, 1994 0.25 0.25 4 0.25 Positive

CCUG 50677 Tobacco, Sweden, 2005 CCUG, 2005 0.25 0.5 2 0.25 Positive
CCUG 32416 T Poultry skin, Belgium, 1984 1 0.25 0.25 2 0.25 Positive
ILRI338 Camel nasal cavity, Kenya, 2014 This study/ILRI 0.25 0.25 4 0.25 Positive
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sequencing revealed an intact blaIARL-blaR1ARL-blaARL operon. The operon was located
between open reading frames encoding a MaoC-like domain-containing protein and a
peptide ABC transporter permease, the same as in the sequenced strains SAN1670,
CVD059, and EGD-HP3 (see Table S1). The blaIARL-blaR1ARL-blaARL operon sequences of
the 10 S. arlettae strains have 88 to 100% nucleotide sequence identity with that of
SAN1670.

The universal presence of blaARL in all of the tested S. arlettae strains from different
sources suggests intrinsic penicillin resistance in this species. The blaIARL-blaR1ARL-blaARL

operon seems to be a stable part of the core genome and not to be associated with any
recombinase. However, the location between guaA and rpsR, integration hot spots for
genomic islands (23, 24), suggests a potential for blaARL mobilization. In addition, diverse
proteins containing typical �-lactamase motifs appear to be present in many different
Staphylococcus species. They lack the antirepressor blaR1 and repressor blaI genes, and their
role in �-lactam resistance is unclear. Our data propose a broader genetic analysis of
penicillin-resistant staphylococci that do not contain blaZ. They also show that the presence
of a functional �-lactamase in S. arlettae is presumable and jeopardizing penicillin treat-
ment. The identification of the pathogen, as well as antimicrobial susceptibility testing, is
therefore necessary for correct and effective therapy.

Accession number(s). The sequence of the blaARL-containing contig of S. arlettae
SAN1670 has been deposited in the GenBank database under accession number
KY363215. The sequence of the blaIARL-blaR1ARL-blaARL operon of S. arlettae strain
ILRI338 has been deposited under accession number KY464892, and those of strains
CCUG 50677, BM242, CCUG 32416, CSKR33, SAN1988, SAN2420, SAN2677, SAN2690,
and CCUG 33610 have been deposited under accession numbers KY363206 to
KY363214, respectively.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00117-17.
TABLE S1, PDF file, 0.3 MB.
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